

THE UNIVERSITY OF TEXAS AT EL PASO Northrop Grumman

Satellite Modularity Design & Implementation

Enoc Ferniza, Naomi Gutierrez, Robert Ruiz

Project Overview

Objective

Use digital engineering to validate and implement modularity in satellite technology

Current Satellite Methods

One-Off Satellites, expensive, inaccessible, and limited to fixed operations

Our Approach

Uses of CAD Simulation and MBSE to create an initial design for a modular satellite

Our Results

Our approach suggests DE could help achieve modularity by continuous V&V and Requirement traceability

Need statement

- Northrop Grumman is pursuing a case study to explore the possibilities of On Orbit Attachable Components (OACs).
- We aim to aid NG in the development of innovative modifications to satellite operations.

Implemented Approach

- Systems Engineering methodology (ISO/IEC/IEEE 15288)
- Model-Based Systems Engineering (OOSEM Methodology)

Ensure that mission requirements are met

Support continuous Verification and Validation

MBSE model provides a reference architecture for future mission modifications

Research

Do you have to send a new one?

1M1M1M10MWhy sending a whole new satellite, when you can only sendpart of it?

- Interoperability
- Interfaces

Modular Systems Approach

What is known about modularity?

• Modularity has existed for a long time

They all have in common: **Standards and Interfaces**

USB XHCI

SAE J537_201105

NHTSA-2019-0011

Research

Satellites are very inaccessible; what happens if they fail?

Case Study Assumptions

- Is not within the scope making a grappling system for the MRV to onboard the satellite.
- MRV and RSGS robotics will be provided by Northrop Grumman
- A scratch design of a satellite is not required nor designing the circuits
- It is not within the scope of the project to consider the real life details of a satellite such as weight, space, launch logistics.

Case Study Assumptions

Our mission will start considering that a compatible satellite is:

Already on GEO

MRV is already attached to satellite and carrying a prepared module to make a modification to satellite.

The concepts generated will apply for the development of future satellites following the same concepts

Our Case Study

Representing modulatory in satellite reference

Tools Aimed To Achieve Modularity?

Magic Systems of Systems Architect (CAMEO)

OACs Satellite Mission

Identifies System of Interest and its Enabling systems

Reference Context Diagram

Use Case Diagram

General Requirements

Requirements elicitation, management, and traceability

🗉 🖪 1 Mission Requirement	The System Shall implement modularity throughout the entirety of its life cycle.
A 📮 🔳 1.1 Functional Requirements	
Compatibility	The System shall be compatible with existing satellites of same standard
E 1.1.2 Module Components	The System shall have interchangeable components
1.1.3 Mounting Mechanism	The System shall physically mount to existing satellites of same standard
1.1.4 Module Incorporation City Prohibit	The System shall physically have modules that couple to each other successfully
1.1.5 Module Release	The System shall have a quick release mechanism for modules
E 1.1.7 Produce Power	The System shall produce power
1.1.11 Data Handling	The System shall handle data
🗆 🔳 1.2 Interface Requirements	Academic
E 1.2.1 Data Transfer	The System shall interchange data with existing Satellites of same standard once physically crocked
E 1.2.2 USB Connection	The System shall be compatible with USB port
🗉 🔳 1.3 Physical Requirements	
E 1.3.1 Dimensions	The System's base shall <u>be 10</u> x 10 cm
1.3.2 Total Weight	The System shall weigh <u>less than 3</u> kg in total

Sample Subsystem Requirements - Casing Subsystem

Hierarchical approach for better traceability

🗆 🔳 1.4 Design Requirements	
E 141 Casing for Terra	The System's circuit boards shall have individual casing
E 1.4.1.1 Casing Rails	
E 1.4.1.1.1 Male Rails	The System shall have 2 male rails at the top of the casing
■ 1.4.1.1.1 Male Measurement	The male rail dimensions shall be a: 12.9808 mm, b: 18.3397 mm, side angles: 75 degrees, length: 59.5 mm
🗆 🔳 1.4.1.1.2 Female Rails	The System shall <u>have 6</u> female rails
□ E 1.4.1.1.2.1 Bottom of Casing	The System shall have 2 female rails at the bottom of the casing
■ 1.4.1.1.2.1.1 Bottom Rail Measureme	The female rail dimensions shall be a: 13.4808 mm, b: 18.8391 mm, side angles: 75 degrees, length: 130 mm
I.4.1.1.2.2 Back of Casing	They System shall have 4 female rails at the back of the casing
1.4.1.1.2.2.1 Lower Back Rail Measur	The female rail dimensions of the lower side of back phase of casing shall be a: 13.4808 mm, b: 18.8391 mm, side angles: 75 degrees, length: 36.25 mm
E 1.4.1.1.2.2.2 Upper Back Rail Measur	The female rail dimensions of the lower side of back phase of casing shall be a: 13.4808 mm, b: 18.8391 mm, side angles: 75 degrees, length: 28.75 mm
1,4,1,1,3 Rail Shape	All System rails shall have an inverted trapezoid prism shape
E 1.4.1.2 Locks Sign for Tor	
E 1.4.1.2.1 System Locks	The System shall <u>have 2</u> locks
E 1.4.1.2.1.1 Lock Handles	The System shall have 2 hexagonal prism shape lock handles
E 1.4.1.2.1.1.1 Lock Pins	The system shall have a rectangular pin on each handle

Casing Requirements

The specificity facilitates System-level Testing, Verification and Validation

E 1.4.1.3 Casing Holes	
E 1.4.1.3.1 System Lock Holes	The System shall have 2 holes on the upper half of the front side of the casing
■ 1.4.1.3.1.1 Casing Holes height Placeme	Casing holes' center point shall <u>be located 17</u> mm from the top of the casing Ac
■ 1.4.1.3.1.2 Casing Holes distance Placer	Casing holes shall be separated by a length of 17.8 mm
□ E 1.4.1.3.2 System Lock Pin Holes	The System shall have 2 pin holes on the bottom half of the front side of the casing
1.4.1.3.2.1 Lock Pin Holes Measuremen	The Pin holes shall have dimensions of length: 27 mm , width: 7.5 mm, height: 26 mm
□ E 1.4.1.4 Casing Measurements	The casing dimensions shall have dimensions of length: 201 mm, width: 130 mm
E 1.4.1.4.1 Length	The casing length shall <u>be 201</u> mm
E 1.4.1.4.2 Width	The casing width shall <u>be 130</u> mm
E 1.4.3 PCB Placement	PCB shall be placed on the connector side closest to the back side of the casing

Internal Composition

Power Module IBD Diagram

UEP

Central Processing Module IBD Diagram

Smaller Board · Pins D & C Central			Larger Board : Pins A & B Central
Sinaler Board . This D d C Central	: Central P	rocessing Module	
for Teaching Only		PA1 : 9 V Unreg Bat PA2 : +5 sw 5	PB1 : GND
c Versionent is sta		PA3 : +5 sw 6	
icial Develop		PA4 : Ambient temp (PE7)	PB3 : +5 Vcc (DH and Comm)
		PA5 : Experiment temp (PF6)	
		PA6 : Bat temp (PF5)	PB6 : 5V reg temp (PF1)
PD1 : Exp Interboard	PC1 : Exp Interboard	PA8 : +5 sw 7	PB8 : +3.3 sw 1rsion for Teach
PD2 : Exp Interboard	PC2 : Exp Interboard	PA9:+5 sw 8	PB9 : +3.3 sw 2 Pevelopment
PD3 : Solar pnl2 +/-	PC3 : Solar ppl2 +/-	PA10 : /SS (PB0)	PB10 : N/C
PD4 : T/R Z +/		PA11 : SCK (PB1)	PB11 : +3.3 sw 3
PD5 · T/R X +/-	FC4 . 1/K 2 +/-	PA12 : MISO (PB3)	PB12 : +3.3 sw 3
	PC5 : T/R X +/-	PA13 : MOSI (PB2)	PB13 : HU PWN
PD7 : Thorm P +/	PC6 : T/R Y +/-	PA14	PB14
	PC7 : Therm B +/-	PA15 : /CS 6 (PC6)	
demic Verba	PC8 : Therm W +/-	PA16 : /CS 5 (PC5)	
PD9 : Panel temp +/-	PC9 : Panel temp +/-	PA17 : /CS 4 (PC4)	
PD10 : Solar pnl1 +/-	PC10 : Solar pnl1 +/-	PA18 : /CS 3 (PC3)	
PD11 : Sep SW +/-	PC11 : Sep SW +/-	PA19 : /CS 2 (PC2)	BB18 : Con 1/0 7
PD12 : Sun Bottomm+/-	PC12 : Sun Bottomm+/-	PA20 · /CS 1 (PC1)	
PD13 : Sun Top +/-	PC13 : Sun Top +/-		B20 : Gen I/O 6
PD14 : Enable +/-	PC14 · Enable +/-		PB21 : Gen I/O 5
PD15 : Case Reserved	PC15 : Yaw 1 +	PAZZ PA23	PB22 : Gen I/O 4
PD16 : Yaw 2 +	PC16 : Yaw 3+	PA24 : Exp Serial TTL RXD	
PD17 : Yaw +4	PC17 : Yaw -	PA25 : Exp Serial TTL TXD	
PD18 : Charge +/-	PC18 : Charge +/-	PA26 : RF Serial RX TTL (PD2)	PB26 : RF speed select
PD19 : Charge +/-	PC19 : Charge +/-	PA27 : RF Serial TX TTL (PD3)	D PB27
PD20:Case Reserved		PA28	
Version I	1 1 C 20 . N/C	PA29	PB29 : +5 Vcc (DH and Comm)
Academic Jal Develo		PA30 : I2C data (PD1)	PB30 : XBee RSSI
Commercia		PA31 : I2C clk (PD0)	• PB31 : GND
		PA32 : GND	PB32 : GND

Connection IBD Diagram

UEP

Physical Representation

Tools Aimed To Achieve Modularity?

Parametric Design

Mathematical Formulas

Parametric Design Mathematical Formulas

Configurations [3]				fx 💵
Name	Lengthe	Width	Height	5
IGC Modular1	160 mm	100.00 mm	55 mm	
IGC Modular 2	160 mm	100 mm	80mm	
IASA Modular1	300mm	300	200	

Simulation

System Design Interaction

Conclusion

By utilizing Digital Engineering, we have devised a methodology aimed to redefine satellite modularity. Through the application of digital engineering principles, we have crafted a blueprint that offers interface adaptation and interoperability in satellite technology.

Our results enable Northrop Grumman to seamlessly integrate on-orbit attachable components and enhance operational missions across a spectrum of satellite platforms.

Acknowledgments

Northrop Grumman

Dr. Andrew Kwas Mr. Oscar Machado

UTEP

Systems Engineering Program

Mr. Juan Del Real Mr. Rene Dominguez Maurilio Resendiz Engr. – Aerospace Center Dr. Sergio Luna

Questions?

